Хэрэглэгч:Tsogo3/Ноорог/Үндсэн өгүүллэгээс/Өнгө

Өнгөгүйгээр хүн аливаа зүйлийг тодорхойлоход маш бэрхшээлтэй болно

Өнгө гэдэг нь хүнд харагдаж буй мэдрэмж бөгөөд улаан, шар, хөх, хар зэргээр ангилна. Гэрлийн спектр, хүний нүдэн дэх гэрэл мэдрэгч эстэй харилцан үйлчлэлцсэнээр өнгө үүсдэг байна. Өнгө нь гэрлийн эх үүсвэр ба гэрэл тусаж буй объект, материалын физик шинж чанараас, өөрөөр хэлбэл тухайн материалын гэрэл шингээлт, ойлголт зэргээс хамаарна.

Гэрлийн шинжлэх ухааныг хроматик гэж нэрлэх нь бий. Энэ шинжлэх ухаан нь хүний нүд ба тархи өнгийг мэдрэх, материалын өнгө, урлагийн өнгөний онол, үзэгдэх гэрлийн муж дахь цахилгаан соронзон цацаргалтын физик шинж зэргийг судална.

Physics of color[засварлах | кодоор засварлах]

Continuous optical spectrum (designed for monitors with gamma 1.5).
The colors of the visible light spectrum[1]
color wavelength interval frequency interval
red ~ 630–700 nm ~ 480–430 THz
orange ~ 590–630 nm ~ 510–480 THz
yellow ~ 560–590 nm ~ 540–510 THz
green ~ 490–560 nm ~ 610–540 THz
blue ~ 450–490 nm ~ 670–610 THz
violet ~ 400–450 nm ~ 750–670 THz

Electromagnetic radiation is characterized by its wavelength (or frequency) and its intensity. When the wavelength is within the visible spectrum (the range of wavelengths humans can perceive, approximately from 380 nm to 740 nm), it is known as "visible light".

Most light sources emit light at many different wavelengths; a source's spectrum is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color sensation in that direction, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class the members are called metamers of the color in question.

Spectral colors[засварлах | кодоор засварлах]

The familiar colors of the rainbow in the spectrum – named using the Latin word for appearance or apparition by Isaac Newton in 1671 – include all those colors that can be produced by visible light of a single wavelength only, the pure spectral or monochromatic colors. The table at right shows approximate frequencies (in terahertz) and wavelengths (in nanometers) for various pure spectral colors. The wavelengths are measured in vacuum (see refraction).

The color table should not be interpreted as a definitive list – the pure spectral colors form a continuous spectrum, and how it is divided into distinct colors is a matter of culture, taste, and language. A common list identifies six main bands: red, orange, yellow, green, blue, and violet. Newton's conception included a seventh color, indigo, between blue and violet – but most people do not distinguish it, and most color scientists do not recognize it as a separate color; it is sometimes designated as wavelengths of 420–440 nm.

The intensity of a spectral color may alter its perception considerably; for example, a low-intensity orange-yellow is brown, and a low-intensity yellow-green is olive-green.

As discussed in the section on color vision, a light source need not actually be of one single wavelength to be perceived as a pure spectral color.

For discussion of non-spectral colors, see below.

Color of objects[засварлах | кодоор засварлах]

The orange disk and the brown disk have exactly the same objective color, and are in identical gray surrounds; based on context differences, humans perceive the squares as having different reflectances, and may interpret the colors as different color categories; see same color illusion.

The color of an object depends on both the physics of the object in its environment and the characteristics of the perceiving eye and brain. Physically, objects can be said to have the color of the light leaving their surfaces, which normally depends on the spectrum of that light and of the incident illumination, as well as potentially on the angles of illumination and viewing. Some objects not only reflect light, but also transmit light or emit light themselves (see below), which contribute to the color also. And a viewer's perception of the object's color depends not only on the spectrum of the light leaving its surface, but also on a host of contextual cues, so that the color tends to be perceived as relatively constant: that is, relatively independent of the lighting spectrum, viewing angle, etc. This effect is known as color constancy.

Some generalizations of the physics can be drawn, neglecting perceptual effects for now:

  • Light arriving at an opaque surface is either reflected "specularly" (that is, in the manner of a mirror), scattered (that is, reflected with diffuse scattering), or absorbed – or some combination of these.
  • Opaque objects that do not reflect specularly (which tend to have rough surfaces) have their color determined by which wavelengths of light they scatter more and which they scatter less (with the light that is not scattered being absorbed). If objects scatter all wavelengths, they appear white. If they absorb all wavelengths, they appear black.
  • Opaque objects that specularly reflect light of different wavelengths with different efficiencies look like mirrors tinted with colors determined by those differences. An object that reflects some fraction of impinging light and absorbs the rest may look black but also be faintly reflective; examples are black objects coated with layers of enamel or lacquer.
  • Objects that transmit light are either translucent (scattering the transmitted light) or transparent (not scattering the transmitted light). If they also absorb (or reflect) light of varying wavelengths differentially, they appear tinted with a color determined by the nature of that absorption (or that reflectance).
  • Objects may emit light that they generate themselves, rather than merely reflecting or transmitting light. They may do so because of their elevated temperature (they are then said to be incandescent), as a result of certain chemical reactions (a phenomenon called chemoluminescence), or for other reasons (see the articles Phosphorescence and List of light sources).
  • Objects may absorb light and then as a consequence emit light that has different properties. They are then called fluorescent (if light is emitted only while light is absorbed) or phosphorescent (if light is emitted even after light ceases to be absorbed; this term is also sometimes loosely applied to light emitted due to chemical reactions).

For further treatment of the color of objects, see structural color, below.

To summarize, the color of an object is a complex result of its surface properties, its transmission properties, and its emission properties, all of which factors contribute to the mix of wavelengths in the light leaving the surface of the object. The perceived color is then further conditioned by the nature of the ambient illumination, and by the color properties of other objects nearby, via the effect known as color constancy and via other characteristics of the perceiving eye and brain.

Color perception[засварлах | кодоор засварлах]

Normalized typical human cone cell responses (S, M, and L types) to monochromatic spectral stimuli

Development of theories of color vision[засварлах | кодоор засварлах]

Main article: Color theory

Although Aristotle and other ancient scientists had already written on the nature of light and color vision, it was not until Newton that light was identified as the source of the color sensation. In 1810, Goethe published his comprehensive Theory of Colors. In 1801 Thomas Young proposed his trichromatic theory, based on the observation that any color could be matched with a combination of three lights. This theory was later refined by James Clerk Maxwell and Hermann von Helmholtz. As Helmholtz puts it, "the principles of Newton's law of mixture were experimentally confirmed by Maxwell in 1856. Young's theory of color sensations, like so much else that this marvellous investigator achieved in advance of his time, remained unnoticed until Maxwell directed attention to it."[2]

At the same time as Helmholtz, Ewald Hering developed the opponent process theory of color, noting that color blindness and afterimages typically come in opponent pairs (red-green, blue-yellow, and black-white). Ultimately these two theories were synthesized in 1957 by Hurvich and Jameson, who showed that retinal processing corresponds to the trichromatic theory, while processing at the level of the lateral geniculate nucleus corresponds to the opponent theory.[3]

In 1931, an international group of experts known as the Commission Internationale d'Eclairage (CIE) developed a mathematical color model, which mapped out the space of observable colors and assigned a set of three numbers to each.

Color in the eye[засварлах | кодоор засварлах]

Гол өгүүлэл: Color vision

The ability of the human eye to distinguish colors is based upon the varying sensitivity of different cells in the retina to light of different wavelengths. The retina contains three types of color receptor cells, or cones. One type, relatively distinct from the other two, is most responsive to light that we perceive as violet, with wavelengths around 420 nm. (Cones of this type are sometimes called short-wavelength cones, S cones, or, misleadingly, blue cones.) The other two types are closely related genetically and chemically. One of them (sometimes called long-wavelength cones, L cones, or, misleadingly, red cones) is most sensitive to light we perceive as yellowish-green, with wavelengths around 564 nm; the other type (sometimes called middle-wavelength cones, M cones, or, misleadingly, green cones) is most sensitive to light perceived as green, with wavelengths around 534 nm.

Light, no matter how complex its composition of wavelengths, is reduced to three color components by the eye. For each location in the visual field, the three types of cones yield three signals based on the extent to which each is stimulated. These values are sometimes called tristimulus values.

The response curve as a function of wavelength for each type of cone is illustrated above. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate only the mid-wavelength/"green" cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human color space. It has been estimated that humans can distinguish roughly 10 million different colors.[4]

The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all.[5] On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone.

Color in the brain[засварлах | кодоор засварлах]

Гол өгүүлэл: Color vision
The visual dorsal stream (green) and ventral stream (purple) are shown. The ventral stream is responsible for color perception.

While the mechanisms of color vision at the level of the retina are well-described in terms of tristimulus values (see above), color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three opponent processes, or opponent channels, each constructed from the raw output of the cones: a red-green channel, a blue-yellow channel and a black-white "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why we cannot perceive a "reddish green" or "yellowish blue," and it predicts the color wheel: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes.

The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our perception of the world, is a matter of complex and continuing philosophical dispute (see qualia).


Color naming[засварлах | кодоор засварлах]

Гол өгүүлэл: Color naming

Colors vary in several different ways, including hue (red vs. orange vs. blue), saturation, brightness, and gloss. Some color words are derived from the name of an object of that color, such as "orange" or "salmon", while others are abstract, like "red".

Different cultures have different terms for colors, and may also assign some color names to slightly different parts of the spectrum: for instance, the Chinese character 青 (rendered as qīng in Mandarin and ao in Japanese) has a meaning that covers both blue and green; blue and green are traditionally considered shades of "青."

In the 1969 study Basic Color Terms: Their Universality and Evolution, Brent Berlin and Paul Kay describe a pattern in naming "basic" colors (like "red" but not "red-orange" or "dark red" or "blood red", which are "shades" of red). All languages that have two "basic" color names distinguish dark/cool colors from bright/warm colors. The next colors to be distinguished are usually red and then blue or green. All languages with six "basic" colors include black, white, red, green, blue and yellow. The pattern holds up to a set of twelve: black, grey, white, pink, red, orange, yellow, green, blue, purple, brown, and azure (distinct from blue in Russian and Italian but not English).


See also[засварлах | кодоор засварлах]

 Commons: Colors – Викимедиа зураг, бичлэг, дууны сан

References[засварлах | кодоор засварлах]

  1. Craig F. Bohren (2006). Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems. Wiley-VCH. ISBN 3527405038.
  2. Hermann von Helmholtz, Physiological Optics – The Sensations of Vision, 1866, as translated in Sources of Color Science, David L. MacAdam, ed., Cambridge: MIT Press, 1970.
  3. Palmer, S.E. (1999). Vision Science: Photons to Phenomenology, Cambridge, MA: MIT Press. ISBN 0-262-16183-4.
  4. Judd, Deane B. (1975). Color in Business, Science and Industry. Wiley Series in Pure and Applied Optics (third edition ed.). New York: Wiley-Interscience. p. 388. ISBN 0471452122. {{cite book}}: |edition= has extra text (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. "Under well-lit viewing conditions (photopic vision), cones ... are highly active and rods are inactive." Hirakawa, K.; Parks, T.W. (2005). "Chromatic Adaptation and White-Balance Problem" in IEEE ICIP.. doi:10.1109/ICIP.2005.1530559. 

External links and sources[засварлах | кодоор засварлах]