Усны эрчим хүч: Засвар хоорондын ялгаа

Content deleted Content added
No edit summary
Мөр 38: Мөр 38:
have the potential to generate 20% of the electricity used in 2012.<ref>[http://www.darvill.clara.net/altenerg/tidal.htm Energy Resources: Tidal power]</ref>
have the potential to generate 20% of the electricity used in 2012.<ref>[http://www.darvill.clara.net/altenerg/tidal.htm Energy Resources: Tidal power]</ref>


==Хэмжээ, төрөл болон цогцолборын хүчин чадал==


== Эрчим хүчний тооцоо ==
=== Томоохон усан цахилгаан станцууд ===

{{See also|List of largest power stations in the world|List of largest hydroelectric power stations}}
Усны эрчим хүч нь физик үүднээс [[чадал|чадл]]аар хэмжигдэнэ. Усны эрчим хүчний хувьд чадал гэдэг нь [[түрэлт|гидравлик түрэлт]] болон [[усны зарцуулга]]ас хамаарсан функц юм. Түрэлт гэдэг нь усны нэгж жин дахь [[энерги]]йн хэмжээг илэрхийлнэ. Түрэлтийг статик ба динамик түрэлт гэж ангилах ба статик түрэлт нь усан цахилгаан станцын доод ба дээд хашиц дахь усны түвшний геометр зөрүү юм. Динамик түрэлт нь усны урсгалын хурднаас бий болно. Өөрөөр хэлбэл эдгээр нь потенциал болон кинетик энерги гэсэн үг юм. Усны нэгж бүрийн хийж чадах [[ажил]] нь түрэлтийг усны жингээр үржсэнтэй тэнцүү байна.
Усны түвшний ялгавараар чөлөөтэй унаж байгаа усны чадал нь зарцуулга, усны нягт, унаж буй өндөр, болон хүндийн хүчний хурдатгалаас шууд хамааралтайгаар тодорхойлогдоно <ref>[http://hydraulicstructure.blogspot.jp/ Усны барилгын инженер Б.Аюурзана.</ref>.

Нэгжийн [[Олон улсын нэгжийн систем|СИ систем]]д, усны эрчим хүчний чадал нь:

<math>N=\eta\rho\,Qgh\!</math>

Үүнд:
* N - усны эрчим хүчний чадал
* η - турбины ашигт үйлийн хэмжээсгүй коэффициент
* ρ - усны нягт буюу 1м куб усны жин
* Q - нэгж хугацаанд турбинаар урсан өнгөрөх усны зарцуулга
* g - хүндийн хүчний хурдатгал
* h - дээд болон доод хашицын усны түвшний ялгавар буюу түрэлт

Турбин 75-90% (0.85-олон улсын туршлага) - ийн ашигтай байхаар, ус нь 1000&nbsp;кг/м.куб нягттай, 80 м.куб зарцуулгатай, 145&nbsp;м - ийн цэвэр түрэлттэй гэсэн жишээ авч чадлыг тодорхойльё.

СИ системд:
Чадал N= 0.85×1000×80×9.81×145=97 MВт

= Ангилал =
[[Физик]] техникийн дэвшлийн дүнд усны энергийг эрчим хүчний зориулалтаар XIX зууны сүүл үеэс ашиглаж эхэлсэн байна. Манай гариг дээрх бүх голуудын усны эрчим хүчний потенциал нь 190000ТВтц/жил ба үүний 9%-ийг ашиглаж байна.
Усан цахилгаан станц нь бусад сэргээгдэх эх үүсвэрүүдийг бодвол суурилуулалтын зардал өндөр боловч эрчим хүчний өртөг хямд байдаг. [[Боомт]]<nowiki/>ын дээд болон доод өндрийн (түвшин) ялгааг [[түрэлт]] ([[Орос хэл|орос]]: напор, [[Англи хэл|англи]]: head) гэнэ. Турбинд орох усны потенциал энерги хэдий чинээ өндөр түрэлттэй байна үйлдвэрлэх цахилгаан энергийн хэмжээ төдий чинээ их байна. Усан цахилгаан станцыг үйлдвэрлэх эрчим хүчний хэмжээ болон барилга байгууламжийн овроос нь хамааруулж дараах байдлаар ангилж байна.
* [[Том оврын усан цахилгаан станц]]
* [[Бага оврын усан цахилгаан станц]]
* [[Микро усан цахилгаан станц]]
* [[Усан цэнэгт усан цахилгаан станц]]
* Далайн усан цахилгаан станц /Далайн давалгаа, түрлэг, дулаан, давсны нөөцнөөс эрчим хүч гарган авах олон шинэ технологиуд нээгдсээр байна./
Сүүлийн үеийн усны энергийн ашиглалтын хэлбэр нь бага оврын болон микро чадлын гольдролын станцуудаас гадна хөвөгч хэлбэрийн усан цахилгаан станцууд болж байна. Хөвөгч хэлбэрийн усан цахилгаан станцын онцлог нь боомт барих, цементэн суурь цутгах нэмэлт зардал гаргахгүй, экологийн хувьд цэвэр, усны урсгалын горимын өөрчлөлтөнд уян хатан, урсгалын бага хурданд ажиллах боломжтой юм.
УЦС төлөвлөхдөө удаан хугацааны судалгааны материал дээр тулгуурлан хийдэг. Эдийн засгийн хувьд голлох үзүүлэлт нь усны урсацын хэмжээ, дээд болон доод хашиц дахь усны түвшний зөрүү буюу түрэлт, турбин болон генераторын ашигт ажиллагааны түвшин байдаг. Усны урсацын хэмжээ ихэвчлэн улирлын чанартайгаар өөрчлөгдөнө. Гэвч голын урсацын энэхүү өөрчлөлтөөс зайлс хийж жилийн туршид тогтвортой эрчим хүч үйлдвэрлэх үүднээс голын урсацад [[урсац тохируулга]] хийж усны хуримтлал бүхий [[усан сан]] үүсгэдэг.
Монгол орны хувьд 5-8 сар хамгийн их урсацтай үе дохиодог. Хэмжээ нь жилийн бүх л хугацааны туршийн урсацын хөндлөн огтлолын талбай, урсгалын хурдны үржвэрээр тодорхойлогдоно. Усны түрэлтийг ихэвчлэн суваг болон боомт, далангаар зохиомлоор бий болгодог. Тухайн голын газрын хэвгий их байх тусам уналт буюу түрэлт өндөр байх боломж ихтэй <ref>[http://myagmardorj.miniih.com/index.php/home/post/71 ШУТИС-ийн ЭХИС, СЭХ тэнхмийн багш О.Батжаргал.</ref>.
==Хэмжээ, төрөл болон цогцолборын хүчин чадлаар ангилах==

=== Том оврын усан цахилгаан станцууд ===
{{See also|Дэлхийн томоохон усан цахилгаан станцуудын жагсаалт}}


Large-scale hydroelectric power stations are more commonly seen as the largest power producing facilities in the world, with some hydroelectric facilities capable of generating more than double the installed capacities of the current [[List of nuclear power stations|largest nuclear power stations]].
Large-scale hydroelectric power stations are more commonly seen as the largest power producing facilities in the world, with some hydroelectric facilities capable of generating more than double the installed capacities of the current [[List of nuclear power stations|largest nuclear power stations]].
Мөр 95: Мөр 129:
An [[underground power station]] is generally used at large facilities and makes use of a large natural height difference between two waterways, such as a waterfall or mountain lake. An underground tunnel is constructed to take water from the high reservoir to the generating hall built in an underground cavern near the lowest point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway.[[Image:Tailrace-Forebay-Limestone.JPG|thumb|Measurement of the tailrace and forebay rates at the [[Limestone Generating Station]] in [[Manitoba]], [[Canada]].]]
An [[underground power station]] is generally used at large facilities and makes use of a large natural height difference between two waterways, such as a waterfall or mountain lake. An underground tunnel is constructed to take water from the high reservoir to the generating hall built in an underground cavern near the lowest point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway.[[Image:Tailrace-Forebay-Limestone.JPG|thumb|Measurement of the tailrace and forebay rates at the [[Limestone Generating Station]] in [[Manitoba]], [[Canada]].]]


== Эрчим хүчний тооцоо ==

Усны эрчим хүч нь физик үүднээс [[чадал|чадл]]аар хэмжигдэнэ. Усны эрчим хүчний хувьд чадал гэдэг нь [[түрэлт|гидравлик түрэлт]] болон [[усны зарцуулга]]ас хамаарсан функц юм. Түрэлт гэдэг нь усны нэгж жин дахь [[энерги]]йн хэмжээг илэрхийлнэ. Түрэлтийг статик ба динамик түрэлт гэж ангилах ба статик түрэлт нь усан цахилгаан станцын доод ба дээд хашиц дахь усны түвшний геометр зөрүү юм. Динамик түрэлт нь усны урсгалын хурднаас бий болно. Өөрөөр хэлбэл эдгээр нь потенциал болон кинетик энерги гэсэн үг юм. Усны нэгж бүрийн хийж чадах [[ажил]] нь түрэлтийг усны жингээр үржсэнтэй тэнцүү байна.
Усны түвшний ялгавараар чөлөөтэй унаж байгаа усны чадал нь зарцуулга, усны нягт, унаж буй өндөр, болон хүндийн хүчний хурдатгалаас шууд хамааралтайгаар тодорхойлогдоно <ref>[http://hydraulicstructure.blogspot.jp/ Усны барилгын инженер Б.Аюурзана.</ref>.

Нэгжийн [[Олон улсын нэгжийн систем|СИ систем]]д, усны эрчим хүчний чадал нь:

<math>N=\eta\rho\,Qgh\!</math>

Үүнд:
* N - усны эрчим хүчний чадал
* η - турбины ашигт үйлийн хэмжээсгүй коэффициент
* ρ - усны нягт буюу 1м куб усны жин
* Q - нэгж хугацаанд турбинаар урсан өнгөрөх усны зарцуулга
* g - хүндийн хүчний хурдатгал
* h - дээд болон доод хашицын усны түвшний ялгавар буюу түрэлт

Турбин 75-90% (0.85-олон улсын туршлага) - ийн ашигтай байхаар, ус нь 1000&nbsp;кг/м.куб нягттай, 80 м.куб зарцуулгатай, 145&nbsp;м - ийн цэвэр түрэлттэй гэсэн жишээ авч чадлыг тодорхойльё.

СИ системд:
Чадал N= 0.85×1000×80×9.81×145=97 MВт

== Ангилал ==
[[Физик]] техникийн дэвшлийн дүнд усны энергийг эрчим хүчний зориулалтаар XIX зууны сүүл үеэс ашиглаж эхэлсэн байна. Манай гариг дээрх бүх голуудын усны эрчим хүчний потенциал нь 190000ТВтц/жил ба үүний 9%-ийг ашиглаж байна.
Усан цахилгаан станц нь бусад сэргээгдэх эх үүсвэрүүдийг бодвол суурилуулалтын зардал өндөр боловч эрчим хүчний өртөг хямд байдаг. [[Боомт]]<nowiki/>ын дээд болон доод өндрийн (түвшин) ялгааг [[түрэлт]] ([[Орос хэл|орос]]: напор, [[Англи хэл|англи]]: head) гэнэ. Турбинд орох усны потенциал энерги хэдий чинээ өндөр түрэлттэй байна үйлдвэрлэх цахилгаан энергийн хэмжээ төдий чинээ их байна. Усан цахилгаан станцыг үйлдвэрлэх эрчим хүчний хэмжээ болон барилга байгууламжийн овроос нь хамааруулж дараах байдлаар ангилж байна.
* [[Том оврын усан цахилгаан станц]]
* [[Бага оврын усан цахилгаан станц]]
* [[Микро усан цахилгаан станц]]
* [[Усан цэнэгт усан цахилгаан станц]]
* Далайн усан цахилгаан станц /Далайн давалгаа, түрлэг, дулаан, давсны нөөцнөөс эрчим хүч гарган авах олон шинэ технологиуд нээгдсээр байна./
Сүүлийн үеийн усны энергийн ашиглалтын хэлбэр нь бага оврын болон микро чадлын гольдролын станцуудаас гадна хөвөгч хэлбэрийн усан цахилгаан станцууд болж байна. Хөвөгч хэлбэрийн усан цахилгаан станцын онцлог нь боомт барих, цементэн суурь цутгах нэмэлт зардал гаргахгүй, экологийн хувьд цэвэр, усны урсгалын горимын өөрчлөлтөнд уян хатан, урсгалын бага хурданд ажиллах боломжтой юм.
УЦС төлөвлөхдөө удаан хугацааны судалгааны материал дээр тулгуурлан хийдэг. Эдийн засгийн хувьд голлох үзүүлэлт нь усны урсацын хэмжээ, дээд болон доод хашиц дахь усны түвшний зөрүү буюу түрэлт, турбин болон генераторын ашигт ажиллагааны түвшин байдаг. Усны урсацын хэмжээ ихэвчлэн улирлын чанартайгаар өөрчлөгдөнө. Гэвч голын урсацын энэхүү өөрчлөлтөөс зайлс хийж жилийн туршид тогтвортой эрчим хүч үйлдвэрлэх үүднээс голын урсацад [[урсац тохируулга]] хийж усны хуримтлал бүхий [[усан сан]] үүсгэдэг.
Монгол орны хувьд 5-8 сар хамгийн их урсацтай үе дохиодог. Хэмжээ нь жилийн бүх л хугацааны туршийн урсацын хөндлөн огтлолын талбай, урсгалын хурдны үржвэрээр тодорхойлогдоно. Усны түрэлтийг ихэвчлэн суваг болон боомт, далангаар зохиомлоор бий болгодог. Тухайн голын газрын хэвгий их байх тусам уналт буюу түрэлт өндөр байх боломж ихтэй <ref>[http://myagmardorj.miniih.com/index.php/home/post/71 ШУТИС-ийн ЭХИС, СЭХ тэнхмийн багш О.Батжаргал.</ref>.


== Монголын усны эрчим хүчний нөөц ==
== Монголын усны эрчим хүчний нөөц ==

07:59, 26 Тавдугаар сар 2015-ий байдлаарх засвар

Дэлхийн хамгийн том эрчим хүчний эх үүсвэр болох Хятадын Гурван хавцлын УЦС

Усны урсгалын хөдөлгөөний энерги нь уснаас эрчим хүч үйлдвэрлэх үндсэн элемэнт болдог бөгөөд энэ нь тухайн бүс нутгийн цаг уур, усны урсац, газарзүйн болон геодизийн нөхцлөөс хамаардаг. Усан цахилгаан станцад усны урсгалын потенциал, кинетик энергийг турбины механик энергиэр дамжуулан генераторт цахилгаан энергид хувиргах хувиргалт хийгдэнэ. Урсгалын энергийг ашиглах нөхцөл нь жилийн туршид голын урсацын өөрчлөлт, цаг уурын нөхцөл, голын болон усан сангийн усны түвшний өөрчлөлт, олон жилийн дундаж үзүүлэлт гэх мэт олон зүйлээс хамаардаг.

Түүхэн хөгжил

Ерөнхий аргачлал

Нихуилес УЦС-ын машины зал, Мендоза, Аргентин.
Боомт бүхий УЦС-ын хөндлөн огтлол.
Ердийн турбин ба генератор

Голдиролын усан цахилгаан станц (боомтот ба голдиролын)

Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head. The amount of potential energy in water is proportional to the head. A large pipe (the "penstock") delivers water to the turbine.[1]

Усан цэнэгт усан цахилгаан станц

This method produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand, the excess generation capacity is used to pump water into the higher reservoir. When the demand becomes greater, water is released back into the lower reservoir through a turbine. Pumped-storage schemes currently provide the most commercially important means of large-scale grid energy storage and improve the daily capacity factor of the generation system. Pumped storage is not an energy source, and appears as a negative number in listings.[2]

Деривацийн усан цахилгаан станц

Run of the river hydroelectric stations are those with small or no reservoir capacity, so that the water coming from upstream must be used for generation at that moment, or must be allowed to bypass the dam. In the United States, run of the river hydropower could potentially provide 60,000 MW (about 13.7% of total use in 2011 if continuously available).[3]

Түрлэгийн усан цахилгаан станц

A tidal power station makes use of the daily rise and fall of ocean water due to tides; such sources are highly predictable, and if conditions permit construction of reservoirs, can also be dispatchable to generate power during high demand periods. Less common types of hydro schemes use water's kinetic energy or undammed sources such as undershot waterwheels. Tidal power is viable in a relatively small number of locations around the world. In Great Britain, there are eight sites that could be developed, which have the potential to generate 20% of the electricity used in 2012.[4]


Эрчим хүчний тооцоо

Усны эрчим хүч нь физик үүднээс чадлаар хэмжигдэнэ. Усны эрчим хүчний хувьд чадал гэдэг нь гидравлик түрэлт болон усны зарцуулгаас хамаарсан функц юм. Түрэлт гэдэг нь усны нэгж жин дахь энергийн хэмжээг илэрхийлнэ. Түрэлтийг статик ба динамик түрэлт гэж ангилах ба статик түрэлт нь усан цахилгаан станцын доод ба дээд хашиц дахь усны түвшний геометр зөрүү юм. Динамик түрэлт нь усны урсгалын хурднаас бий болно. Өөрөөр хэлбэл эдгээр нь потенциал болон кинетик энерги гэсэн үг юм. Усны нэгж бүрийн хийж чадах ажил нь түрэлтийг усны жингээр үржсэнтэй тэнцүү байна. Усны түвшний ялгавараар чөлөөтэй унаж байгаа усны чадал нь зарцуулга, усны нягт, унаж буй өндөр, болон хүндийн хүчний хурдатгалаас шууд хамааралтайгаар тодорхойлогдоно [5].

Нэгжийн СИ системд, усны эрчим хүчний чадал нь:

Үүнд:

  • N - усны эрчим хүчний чадал
  • η - турбины ашигт үйлийн хэмжээсгүй коэффициент
  • ρ - усны нягт буюу 1м куб усны жин
  • Q - нэгж хугацаанд турбинаар урсан өнгөрөх усны зарцуулга
  • g - хүндийн хүчний хурдатгал
  • h - дээд болон доод хашицын усны түвшний ялгавар буюу түрэлт

Турбин 75-90% (0.85-олон улсын туршлага) - ийн ашигтай байхаар, ус нь 1000 кг/м.куб нягттай, 80 м.куб зарцуулгатай, 145 м - ийн цэвэр түрэлттэй гэсэн жишээ авч чадлыг тодорхойльё.

СИ системд: Чадал N= 0.85×1000×80×9.81×145=97 MВт

Ангилал

Физик техникийн дэвшлийн дүнд усны энергийг эрчим хүчний зориулалтаар XIX зууны сүүл үеэс ашиглаж эхэлсэн байна. Манай гариг дээрх бүх голуудын усны эрчим хүчний потенциал нь 190000ТВтц/жил ба үүний 9%-ийг ашиглаж байна. Усан цахилгаан станц нь бусад сэргээгдэх эх үүсвэрүүдийг бодвол суурилуулалтын зардал өндөр боловч эрчим хүчний өртөг хямд байдаг. Боомтын дээд болон доод өндрийн (түвшин) ялгааг түрэлт (орос: напор, англи: head) гэнэ. Турбинд орох усны потенциал энерги хэдий чинээ өндөр түрэлттэй байна үйлдвэрлэх цахилгаан энергийн хэмжээ төдий чинээ их байна. Усан цахилгаан станцыг үйлдвэрлэх эрчим хүчний хэмжээ болон барилга байгууламжийн овроос нь хамааруулж дараах байдлаар ангилж байна.

Сүүлийн үеийн усны энергийн ашиглалтын хэлбэр нь бага оврын болон микро чадлын гольдролын станцуудаас гадна хөвөгч хэлбэрийн усан цахилгаан станцууд болж байна. Хөвөгч хэлбэрийн усан цахилгаан станцын онцлог нь боомт барих, цементэн суурь цутгах нэмэлт зардал гаргахгүй, экологийн хувьд цэвэр, усны урсгалын горимын өөрчлөлтөнд уян хатан, урсгалын бага хурданд ажиллах боломжтой юм. УЦС төлөвлөхдөө удаан хугацааны судалгааны материал дээр тулгуурлан хийдэг. Эдийн засгийн хувьд голлох үзүүлэлт нь усны урсацын хэмжээ, дээд болон доод хашиц дахь усны түвшний зөрүү буюу түрэлт, турбин болон генераторын ашигт ажиллагааны түвшин байдаг. Усны урсацын хэмжээ ихэвчлэн улирлын чанартайгаар өөрчлөгдөнө. Гэвч голын урсацын энэхүү өөрчлөлтөөс зайлс хийж жилийн туршид тогтвортой эрчим хүч үйлдвэрлэх үүднээс голын урсацад урсац тохируулга хийж усны хуримтлал бүхий усан сан үүсгэдэг. Монгол орны хувьд 5-8 сар хамгийн их урсацтай үе дохиодог. Хэмжээ нь жилийн бүх л хугацааны туршийн урсацын хөндлөн огтлолын талбай, урсгалын хурдны үржвэрээр тодорхойлогдоно. Усны түрэлтийг ихэвчлэн суваг болон боомт, далангаар зохиомлоор бий болгодог. Тухайн голын газрын хэвгий их байх тусам уналт буюу түрэлт өндөр байх боломж ихтэй [6].

Хэмжээ, төрөл болон цогцолборын хүчин чадлаар ангилах

Том оврын усан цахилгаан станцууд

Large-scale hydroelectric power stations are more commonly seen as the largest power producing facilities in the world, with some hydroelectric facilities capable of generating more than double the installed capacities of the current largest nuclear power stations.

Although no official definition exists for the capacity range of large hydroelectric power stations, facilities from over a few hundred megawatts are generally considered large hydroelectric facilities.

Currently, only four facilities over 10 GW (10,000 MW) are in operation worldwide, see table below.[7]

Rank Station Country Location Capacity (MW)
1. Three Gorges Dam  China 30°49′15″N 111°00′08″E / 30.82083°N 111.00222°E / 30.82083; 111.00222 (Three Gorges Dam) 22,500
2. Itaipu Dam  Brazil
 Paraguay
25°24′31″S 54°35′21″W / 25.40861°S 54.58917°W / -25.40861; -54.58917 (Itaipu Dam) 14,000
3. Xiluodu Dam  China 28°15′35″N 103°38′58″E / 28.25972°N 103.64944°E / 28.25972; 103.64944 (Xiluodu Dam) 13,860
4. Guri Dam  Venezuela 07°45′59″N 62°59′57″W / 7.76639°N 62.99917°W / 7.76639; -62.99917 (Guri Dam) 10,200
Panoramic view of the Itaipu Dam, with the spillways (closed at the time of the photo) on the left. In 1994, the American Society of Civil Engineers elected the Itaipu Dam as one of the seven modern Wonders of the World.[8]

Бага оврын усан цахилгаан станцууд


Small hydro is the development of hydroelectric power on a scale serving a small community or industrial plant. The definition of a small hydro project varies but a generating capacity of up to 10 megawatts (MW) is generally accepted as the upper limit of what can be termed small hydro. This may be stretched to 25 MW and 30 MW in Canada and the United States. Small-scale hydroelectricity production grew by 28% during 2008 from 2005, raising the total world small-hydro capacity to 85 GW. Over 70% of this was in China (65 GW), followed by Japan (3.5 GW), the United States (3 GW), and India (2 GW).[9]

A micro-hydro facility in Vietnam
Pico hydroelectricity in Mondulkiri, Cambodia

Small hydro stations may be connected to conventional electrical distribution networks as a source of low-cost renewable energy. Alternatively, small hydro projects may be built in isolated areas that would be uneconomic to serve from a network, or in areas where there is no national electrical distribution network. Since small hydro projects usually have minimal reservoirs and civil construction work, they are seen as having a relatively low environmental impact compared to large hydro. This decreased environmental impact depends strongly on the balance between stream flow and power production.

Микро Усан цахилгаан станцууд


Micro hydro is a term used for hydroelectric power installations that typically produce up to 100 kW of power. These installations can provide power to an isolated home or small community, or are sometimes connected to electric power networks. There are many of these installations around the world, particularly in developing nations as they can provide an economical source of energy without purchase of fuel.[10] Micro hydro systems complement photovoltaic solar energy systems because in many areas, water flow, and thus available hydro power, is highest in the winter when solar energy is at a minimum.

Бичил усан цахилган станц


Pico hydro is a term used for hydroelectric power generation of under 5 kW. It is useful in small, remote communities that require only a small amount of electricity. For example, to power one or two fluorescent light bulbs and a TV or radio for a few homes.[11] Even smaller turbines of 200-300W may power a single home in a developing country with a drop of only 1 m (3 ft). A Pico-hydro setup is typically run-of-the-river, meaning that dams are not used, but rather pipes divert some of the flow, drop this down a gradient, and through the turbine before returning it to the stream.

Газар доорхи усан цахилгаан станц

Гол өгүүлэл: Underground power station


An underground power station is generally used at large facilities and makes use of a large natural height difference between two waterways, such as a waterfall or mountain lake. An underground tunnel is constructed to take water from the high reservoir to the generating hall built in an underground cavern near the lowest point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway.

Measurement of the tailrace and forebay rates at the Limestone Generating Station in Manitoba, Canada.


Монголын усны эрчим хүчний нөөц

Сэргээгдэх эрчим хүчний дундаас усны эрчим хүч хамгийн өргөн хэрэглэгддэг. Байгалийн нөөц хязгаартай тул улс орнууд эрчим хүчний төлөө тэмцэлдэж байна. Цаг уурын өөрчлөлт, байгаль орчны бохирдол, түлш шатахууны үнийн өсөлт зэрэг тулгамдаж буй асуудал нь сэргээгдэх эрчим хүчийг үйлдвэрлэх, хэрэглэх шаардлага бийг харуулж байгаа. Ялангуяа хямд өртгөөр гарган авч болох усны эрчим хүчний асуудал зүй ёсоор тавигдаж буй. Дэлхийн олон оронд эрчим хүчээ усан цахилгаан станцаас гарган авдаг. 2006 оны байдлаар дэлхийн нийт эрчим хүчний бараг 20, сэргээгдэх эрчим хүчний ойролцоогоор 88, 2008 онд дэлхийн нийт сэргээгдэх эрчим хүчний 50-иас илүү хувийг усны эрчим хүч эзэлж байна. Бразил, Канад, Шинэ Зеланд, Норвеги, Парагвай зэрэг орон эрчим хүчнийхээ дийлэнхийг усан цахилгаан станцаасаа гаргаж авдаг байна. Норвегид л гэхэд эрчим хүчнийхээ 98-99 хувийг усан цахилгаан станцаас хангадаг гэсэн тооцоо бий. Манай орны нийт нутаг дэвсгэр дээр нар, салхи, усны эрчим хүчийг хуваарилсан мэт жигд тархалттай байдаг. Тодруулбал Алтай, Хангай, Хэнтий, Хөвсгөлийн уулархаг нутагт усны, говь, хээрийн бүсэд нар, салхины эрчим хүчийг ашиглах боломжтойг сэргээгдэх эрчим хүчний нөөцийн судалгаанаас харж болно. Усны эрчим хүчийг шинжлэх ухааны үндэслэлтэйгээр ашиглах асуудлыг 1950 оноос эхлэн судалж, нөөцийн анхны үнэлгээг 1960 онд хийж Монголын эрчим хүчний нийт чадлыг 3800 МВт гэж тооцсон байдаг. Манай анхны УЦС нь 1959 онд Хархоринд Орхон гол дээр баригдсан 528 КВт-ын чадалтай станц юм. Одоогоор бага чадлын 150-2000 КВт-ын есөн УЦС ажиллаж байна. Түүнчлэн сүүлийн жилүүдэд Ховдын Дөргөний 12 МВт, Говь-Алтайн Тайширын 11 МВт-ын дунд чадлын, Завханы Цэцэн-Уулын 150 КВт-ын, Завханмандалын 110 КВт-ын бага чадлын усан цахилгаан станцыг ашиглалтад оруулаад байгаа. Ийнхүү бага чадлын УЦС-ыг ашиглалтад оруулж хөдөөгийн сум, сууринг цахилгаанаар хангах нь цаашид усны эрчим хүчийг ашиглах боломж бийг харуулж байгаа юм. Монгол Улсын эрчим хүчний системийн 2009 оны оргил ачаалал 695 МВт-д хүрч байжээ. Харин өнгөрсөн оны арванхоёрдугаар сарын 15-нд системийн оргил ачаалал 728 МВт-д хүрэхэд ОХУ-аас 70 МВт эрчим хүч импортолсон бөгөөд манай дулааны цахилгаан станцууд бүрэн хүчин чадлаараа ажиллаж байсан. Манай орны хөгжлийн хэтийн чиг хандлагаар 2020 онд оргил ачаалал 1128 МВт-д хүрэх магадлалтай бөгөөд тэр үед импортоор 500 орчим МВт эрчим хүч авахаар байна. Жил бүр ийм хэмжээний цахилгааны чадал авахад хүрвэл эдийн засаг доройтолд орж, шугамын дамжуулах чадвар хүрэлцэхгүй. Иймд төвийн эрчим хүчний системд үүссэн дутагдлыг нөхөх, ачааллыг тохируулах, шаардлагатай үед богино хугацаанд ажилд оруулах боломжтой том чадлын усан цахилгаан станц барьж ашиглалтад оруулах зайлшгүй шаардлагатай байгаа юм. Мөн “Сэргээгдэх эрчим хүчний тухай” хууль, “Монгол Улсын эрчим хүчний нэгдсэн систем хөтөлбөр”, “Сэргээгдэх эрчим хүчний хөтөлбөр” болон Засгийн газрын мөрийн хөтөлбөрт тусгасан заалтын дагуу эрчим хүчний хангамжийн бүтцийг сайжруулах, сэргээгдэх эрчим хүчний хэмжээг нэмэгдүүлэх, агаарын бохирдлыг багасгах, хөдөө орон нутгийг эрчим хүчээр найдвартай хангах замаар Монгол Улсын нийгэм, эдийн засгийг тогтвортой хөгжүүлэх нөхцөлийг бүрдүүлэх зорилтыг хэрэгжүүлэхэд том болон дунд чадлын усан цахилгаан станц байгуулах шаардлагатай юм. Эрчим хүчний системд усны эрчим хүчний оролцоог нэмэгдүүлэх, сүлжээний доголдлын горимыг сайжруулахад Эгийн голын 220 МВт, Шүрэнгийн 200 МВт, Орхон голын 100 МВт, Ховдын Эрдэнэбүрэнгийн 60 МВт, Хөвсгөлийн Чаргайтын 25 МВт зэрэг усан цахилгаан станцын төслүүд тодорхой үүрэг гүйцэтгэх юм. Дэлхий дахины шинэ хандлага ногоон хөгжлийн үзэл баримтлалыг хэрэгжүүлэхэд усан цахилгаан станцуудыг байгуулж, хөгжүүлэх нь чухал[12].

Мөн үзэх

Эх сурвалж

  1. Hydro Electricity Explained
  2. Pumped Storage, Explained
  3. Run-of-the-River Hydropower Goes With the Flow
  4. Energy Resources: Tidal power
  5. [http://hydraulicstructure.blogspot.jp/ Усны барилгын инженер Б.Аюурзана.
  6. [http://myagmardorj.miniih.com/index.php/home/post/71 ШУТИС-ийн ЭХИС, СЭХ тэнхмийн багш О.Батжаргал.
  7. Worldwatch Institute (January 2012). "Use and Capacity of Global Hydropower Increases".
  8. Pope, Gregory T. (December 1995), "The seven wonders of the modern world", Popular Mechanics, pp. 48–56
  9. Renewables Global Status Report 2006 Update, REN21, published 2006
  10. "Micro Hydro in the fight against poverty". Tve.org. Retrieved 2012-07-22.
  11. "Pico Hydro Power". T4cd.org. Retrieved 2010-07-16.
  12. [http://mongolianeconomy.mn/mobile.php/mn/i/1005 Монголын усны эрчим хүний нөөц, УЦС-ын мэргэшсэн инженер Б.Болдбаатар.